ASCENT Liaison Meeting / Overcoming Challenges for Achieving High in-situ Training Accuracy with Emerging Memories

-

Location: webex

Overcoming Challenges for Achieving High in-situ Training Accuracy with Emerging Memories

Presenter: Shanshi Huang (Georgia Tech) PhD student in Prof. Shimeng Yu's group.

Abstract: Embedded artificial intelligence (AI) prefers the adaptive learning capability when deployed in the field, thus in-situ training on-chip is required. Emerging non-volatile memories (eNVMs) are of great interests serving as analog synapses in deep neural network (DNN) on-chip acceleration due to its multilevel programmability. However, the asymmetry/nonlinearity in the conductance tuning remains a grand challenge for achieving high in-situ training accuracy. In addition, analog-to-digital converter (ADC) at the edge of the memory array introduces an additional challenge - quantization error for in-memory computing. In this work, we gain new insights and overcome these challenges through an algorithm-hardware co-optimization. We incorporate these hardware non-ideal effects into the DNN propagation and weight update steps. We evaluate on a VGG-like network for CIFAR-10 dataset, and we show that the asymmetry of the conductance tuning is no longer a limiting factor of in-situ training accuracy if exploiting adaptive “momentum” in the weight update rule. Even considering ADC quantization error, in-situ training accuracy could approach software baseline. Our results show much relaxed requirements that enable a variety of eNVMs for DNN acceleration on the embedded AI platforms.

This meeting is only available to the JUMP research community, such as Principal Investigators, Postdoc researchers, Students, and Industry/Government liaisons.